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Abstract
We evaluate the six-fold integral representation for the second-order exchange
contribution to the self-energy of a dense three-dimensional electron gas on the
Fermi surface.

PACS numbers: 71.10.Ca, 05.30.Fk

Introduction

The second-order exchange energy contributes importantly to the correlation energy of a dense
electron gas [1]. It is given by the nine-fold integral

E2x = 3

32π4

∫
d3p1

∫
d3p2

∫
dq3

q2

fp1fp2f
′
p1+qf

′
p2+q

(�q + �p1 + �p2)2(q2 + �p1 · �q + �p2 · �q)
(1)

in three dimensions, where fp denotes the Fermi distribution function for electrons of wave
vector �p and f ′

p denotes that for holes. In a remarkable display of mathematical virtuosity (1)
was evaluated in closed form by Onsager [2] and Onsager, Mittag and Stephen [3] who found

E2x = 1

6
ln(2) − 3

4π2
ζ(3). (2)

Subsequently, Ishihara and Ioratti [4] worked out the corresponding value for a two-
dimensional system, and the d-dimensional case was evaluated by Glasser [5].

Recently the second-order exchange term in the electron self-energy has been studied by
Ziesche [6]. It is given, in three dimensions, by the six-fold integral

�2x(k) = 1

4π4

∫
d3q

q2

∫
d3p

fpfk+qfp+qf
′
pf ′

p+q

(�k + �p + �q)2(q2 + �k · �q + �p · �q)
. (3)

For k = kF (=1) Ziesche succeeded in decomposing (3) into the sum �2x = −(X1 + X2)/4π2

of the two simpler integrals
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X1 =
∫

d3q1

q2
1

∫
d3q2

q2
2

fk+q1+q2f
′
k+q1

f ′
k+q2

�q1 · �q2
(4)

X2 = −
∫

d3q1

q2
1

∫
d3q2

q2
2

f ′
k+q1+q2

fk+q1fk+q2

�q1 · �q2

and by following the procedure in [3], he managed to perform three of the integrations, thereby
obtaining

X1 = −16π

∫ 1

0
dp

∫ 1

0
dq

∫ 1

−1

dx

(1 − p2q2)

F [p, q, x]

1 + q2

(5)

X2 = 16π

∫ 1

0
dp

∫ 1

0
dq

∫ 1

−1

dx

(1 − p2q2)

q2F [p, q, x]

1 + q2

where

α = 1 − q2

2q
, β = 1 − p2

2p
, a = 1 + p2q2

2pq
(6)

F [p, q, x] = 2

a2 − x2
tan−1

[
αx + β√

(1 + α2)(1 − x2)

]
.

The integrals in (6) are amenable to numerical evaluation and Ziesche found X1 =
−30.705 98 . . . , X2 = 21.284 90 . . . .

According to the Hugenholtz–van Hove–Luttinger–Ward theorem [7] �2x = E2x , giving

X1 + X2 = 3ζ(3) − 2π2

3
ln(2). (7)

The aim of this paper is to evaluate X = X2 − X1, so as to obtain closed form expressions for
the integrals in (4).

Calculation

From (5) we have

X = 16π

∫ 1

0
dq

∫ 1

0
dp

∫ 1

−1
dx

F [p, q, x]

1 − p2q2
. (8)

Since the limits on the x-integral are symmetric, we retain only the even part of the integrand of
(8) by averaging X and the integral obtained by x → −x; after combining the two arctangents,
one obtains

X = 16π

∫ 1

0
dp

∫ 1

0
dq

∫ 1

0
dx

tan−1
[ 2β

√
(1+α2)(1−x2)

α2−β2+1−x2

]
(1 − p2q2)(a2 − x2)

. (9)

Next, we set q = e−u, p = e−v, x = sin φ, so α = sinh u, β = sinh v, a = cosh(u + v), and
find that

X = 8π

∫ ∞

0
du

∫ ∞

0
dv

∫ π/2

0
dφ cos φ

tan−1
[

(sinh(u+v)+sinh(v−u)) cos φ

sinh(u+v) sinh(u−v)+cos2 φ

]
sinh(u + v)[sinh2(u + v) + cos2 φ]

. (10)

We next make the coordinate transformation r = v + u, s = v − u, having Jacobian 1/2,
to obtain

X = 4π

∫ ∞

0
dr

∫ r

−r

ds

∫ π/2

0
dφ cos φ

tan−1
[

(sinh r+sinh s) cos φ

cos2 φ−sinh r sinh s

]
sinh r(sinh2 r + cos2 φ)

. (11)
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Since

tan−1

[
cos φ(sinh r + sinh s)

cos2 φ − sinh r sinh s

]
= Im ln[(cos φ + i sinh r)(cos φ + i sinh s)]

= tan−1

(
sinh r

cos φ

)
+ tan−1

(
sinh s

cos φ

)
, (12)

(11) becomes

X = 4π

∫ ∞

0
dr

∫ r

−r

ds

∫ π/2

0
dφ cos φ

tan−1(sec φ sinh r) + tan−1(sec φ sinh s)

sinh r(cos2 φ + sinh2 r)
. (13)

Once again, the term in the integrand of (13) odd in s may be dropped and following the
elementary s-integration, one has

X = 8π

∫ ∞

0

r dr

sinh r

∫ π/2

0
dφ tan−1

(
sinh r

cos φ

)
cos φ

cos2 φ + sinh2 r
. (14)

To evaluate the φ-integral, we set tan ψ = sec φ sinh r, µ = tan−1(sinh r) = cos−1(sech r), to
transform (14) into

X = 8π

∫ ∞

0

r dr

sinh r
cos µ

∫ π/2

µ

ψ cos ψ dψ√
sin2 ψ − sin2 µ

. (15)

The ψ-integral is tabulated [8] and X is reduced to

X = 4π2
∫ ∞

0

r sech r ln(1 + sech r)

sinh r
dr. (16)

To evaluate the remaining integral, let

f (a) =
∫ ∞

0

r ln(1 − a sech r)

sinh r cosh r
dr (17)

for which f (1) = X/4π2 and f (0) = 0. By differentiation with respect to a and partial
fraction decomposition, we obtain

(1 − a2)
df

da
=

∫ ∞

0

r dr

sinh r
− 2a

∫ ∞

0

r dr

sinh 2r
− 1

a

∫ ∞

0
r sinh r

[
1

cosh r
− 1

cosh r + a

]
. (18)

The first two integrals on the right-hand side of (18) are tabulated [9] and, after an integration
by parts, we find

(1 − a2)
df

da
= π2

8
(2 − a) − 1

a

∫ ∞

0
ln(1 + a sech r) dr. (19)

The substitution u = sech r leads to another tabulated integral [10], giving

df

da
= −π2

8a

(
1 − a

1 + a

)
+

1

2a

(cos−1 a)2

1 − a2
, (20)

which, with the substitution a = cos θ , yields

X = 4π2
∫ 1

0

df

da
da = π4 ln(2) + 4π2

∫ π/2

0

dθ

sin 2θ

[
θ2 − π2

8
(1 − cos(2θ))

]
. (21)

Finally, we find by setting φ = 2θ , and folding the new range of integration [π/2, π ] back to
[0, π/2]

X = π4 ln(2) + 4π2
∫ π/2

0

4φ(φ − π)

sin φ
dφ

(22)
= π4 ln(2) − 7

2
π2ζ(3),
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where we have used [11]∫ π/2

0

φ dφ

sin φ
= 2G,

∫ π/2

0

φ2dφ

sin φ
= 2πG − 7

2
ζ(3) (23)

in which G denotes Catalan’s constant.

Discussion

In conclusion, we have obtained closed form expressions for the two six-fold integrals in (4)

X1 = −π4

[
4

3
ln(2) − 5

π2
ζ(3)

]
= −30.705 985 239 248 899 257 622 684 446 084 815 368 758 552 081

659 459 189 816 458 46 . . . . (24)

X2 = π4

[
2

3
ln(2) − 2

π2
ζ(3)

]
= 21.284 905 670 516 337 983 402 598 547 497 784 400 625 730 440 810 132

220 995 696 061 . . . . (25)

This gives the value

�2x = 0.024 179 158 918 144 405 895 450 762 162 898 431 404 915 238 425 120

733 594 530 9986 . . . , (26)

in agreement with Ziesche’s [6] seven place calculation. We hope to extend the calculation to
an electron gas of arbitrary dimension, as was done for E2x .
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