Analysis of the second-order exchange self-energy of a dense electron gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 401215
(http://iopscience.iop.org/1751-8121/40/6/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:31

Please note that terms and conditions apply.

Analysis of the second-order exchange self-energy of a dense electron gas

M L Glasser ${ }^{1}$ and George Lamb ${ }^{2}$
${ }^{1}$ Center for Quantum Device Technology and Department of Physics, Clarkson University Potsdam, NY 13699-5820, USA
${ }_{2} 2942$ Ave. del Conquistador, Tucson, AZ 85749-9304, USA

Received 8 November 2006
Published 23 January 2007
Online at stacks.iop.org/JPhysA/40/1215

Abstract

We evaluate the six-fold integral representation for the second-order exchange contribution to the self-energy of a dense three-dimensional electron gas on the Fermi surface.

PACS numbers: 71.10.Ca, 05.30.Fk

Introduction

The second-order exchange energy contributes importantly to the correlation energy of a dense electron gas [1]. It is given by the nine-fold integral

$$
\begin{equation*}
E_{2 x}=\frac{3}{32 \pi^{4}} \int \mathrm{~d}^{3} p_{1} \int \mathrm{~d}^{3} p_{2} \int \frac{\mathrm{~d} q^{3}}{q^{2}} \frac{f_{p_{1}} f_{p_{2}} f_{p_{1}+q}^{\prime} f_{p_{2}+q}^{\prime}}{\left(\vec{q}+\vec{p}_{1}+\vec{p}_{2}\right)^{2}\left(q^{2}+\vec{p}_{1} \cdot \vec{q}+\vec{p}_{2} \cdot \vec{q}\right)} \tag{1}
\end{equation*}
$$

in three dimensions, where f_{p} denotes the Fermi distribution function for electrons of wave vector \vec{p} and f_{p}^{\prime} denotes that for holes. In a remarkable display of mathematical virtuosity (1) was evaluated in closed form by Onsager [2] and Onsager, Mittag and Stephen [3] who found

$$
\begin{equation*}
E_{2 x}=\frac{1}{6} \ln (2)-\frac{3}{4 \pi^{2}} \zeta(3) . \tag{2}
\end{equation*}
$$

Subsequently, Ishihara and Ioratti [4] worked out the corresponding value for a twodimensional system, and the d-dimensional case was evaluated by Glasser [5].

Recently the second-order exchange term in the electron self-energy has been studied by Ziesche [6]. It is given, in three dimensions, by the six-fold integral

$$
\begin{equation*}
\Sigma_{2 x}(k)=\frac{1}{4 \pi^{4}} \int \frac{\mathrm{~d}^{3} q}{q^{2}} \int \mathrm{~d}^{3} p \frac{f_{p} f_{k+q} f_{p+q} f_{p}^{\prime} f_{p+q}^{\prime}}{(\vec{k}+\vec{p}+\vec{q})^{2}\left(q^{2}+\vec{k} \cdot \vec{q}+\vec{p} \cdot \vec{q}\right)} . \tag{3}
\end{equation*}
$$

For $k=k_{F}(=1)$ Ziesche succeeded in decomposing (3) into the sum $\Sigma_{2 x}=-\left(X_{1}+X_{2}\right) / 4 \pi^{2}$ of the two simpler integrals

$$
\begin{align*}
& X_{1}=\int \frac{\mathrm{d}^{3} q_{1}}{q_{1}^{2}} \int \frac{\mathrm{~d}^{3} q_{2}}{q_{2}^{2}} \frac{f_{k+q_{1}+q_{2}} f_{k+q_{1}}^{\prime} f_{k+q_{2}}^{\prime}}{\vec{q}_{1} \cdot \vec{q}_{2}} \\
& X_{2}=-\int \frac{\mathrm{d}^{3} q_{1}}{q_{1}^{2}} \int \frac{\mathrm{~d}^{3} q_{2}}{q_{2}^{2}} \frac{f_{k+q_{1}+q_{2}}^{\prime} f_{k+q_{1}} f_{k+q_{2}}}{\vec{q}_{1} \cdot \vec{q}_{2}} \tag{4}
\end{align*}
$$

and by following the procedure in [3], he managed to perform three of the integrations, thereby obtaining

$$
\begin{align*}
& X_{1}=-16 \pi \int_{0}^{1} \mathrm{~d} p \int_{0}^{1} \mathrm{~d} q \int_{-1}^{1} \frac{\mathrm{~d} x}{\left(1-p^{2} q^{2}\right)} \frac{F[p, q, x]}{1+q^{2}} \\
& X_{2}=16 \pi \int_{0}^{1} \mathrm{~d} p \int_{0}^{1} \mathrm{~d} q \int_{-1}^{1} \frac{\mathrm{~d} x}{\left(1-p^{2} q^{2}\right)} \frac{q^{2} F[p, q, x]}{1+q^{2}} \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha=\frac{1-q^{2}}{2 q}, \quad \beta=\frac{1-p^{2}}{2 p}, \quad a=\frac{1+p^{2} q^{2}}{2 p q} \tag{6}\\
& F[p, q, x]=\frac{2}{a^{2}-x^{2}} \tan ^{-1}\left[\frac{\alpha x+\beta}{\sqrt{\left(1+\alpha^{2}\right)\left(1-x^{2}\right)}}\right]
\end{align*}
$$

The integrals in (6) are amenable to numerical evaluation and Ziesche found $X_{1}=$ $-30.70598 \ldots, X_{2}=21.28490 \ldots$.

According to the Hugenholtz-van Hove-Luttinger-Ward theorem [7] $\Sigma_{2 x}=E_{2 x}$, giving

$$
\begin{equation*}
X_{1}+X_{2}=3 \zeta(3)-\frac{2 \pi^{2}}{3} \ln (2) \tag{7}
\end{equation*}
$$

The aim of this paper is to evaluate $X=X_{2}-X_{1}$, so as to obtain closed form expressions for the integrals in (4).

Calculation

From (5) we have

$$
\begin{equation*}
X=16 \pi \int_{0}^{1} \mathrm{~d} q \int_{0}^{1} \mathrm{~d} p \int_{-1}^{1} \mathrm{~d} x \frac{F[p, q, x]}{1-p^{2} q^{2}} \tag{8}
\end{equation*}
$$

Since the limits on the x-integral are symmetric, we retain only the even part of the integrand of (8) by averaging X and the integral obtained by $x \rightarrow-x$; after combining the two arctangents, one obtains

$$
\begin{equation*}
X=16 \pi \int_{0}^{1} \mathrm{~d} p \int_{0}^{1} \mathrm{~d} q \int_{0}^{1} \mathrm{~d} x \frac{\tan ^{-1}\left[\frac{2 \beta \sqrt{\left(1+\alpha^{2}\right)\left(1-x^{2}\right)}}{\alpha^{2}-\beta^{2}+1-x^{2}}\right]}{\left(1-p^{2} q^{2}\right)\left(a^{2}-x^{2}\right)} \tag{9}
\end{equation*}
$$

Next, we set $q=\mathrm{e}^{-u}, p=\mathrm{e}^{-v}, x=\sin \phi$, so $\alpha=\sinh u, \beta=\sinh v, a=\cosh (u+v)$, and find that
$X=8 \pi \int_{0}^{\infty} \mathrm{d} u \int_{0}^{\infty} \mathrm{d} v \int_{0}^{\pi / 2} \mathrm{~d} \phi \cos \phi \frac{\tan ^{-1}\left[\frac{(\sinh (u+v)+\sinh (v-u)) \cos \phi}{\sinh (u+v) \sinh (u-v)+\cos ^{2} \phi}\right]}{\sinh (u+v)\left[\sinh ^{2}(u+v)+\cos ^{2} \phi\right]}$.
We next make the coordinate transformation $r=v+u, s=v-u$, having Jacobian 1/2, to obtain

$$
\begin{equation*}
X=4 \pi \int_{0}^{\infty} \mathrm{d} r \int_{-r}^{r} \mathrm{~d} s \int_{0}^{\pi / 2} \mathrm{~d} \phi \cos \phi \frac{\tan ^{-1}\left[\frac{(\sinh r+\sinh s) \cos \phi}{\left.\cos ^{2} \phi-\sinh r \sinh \right]}\right]}{\sinh r\left(\sinh ^{2} r+\cos ^{2} \phi\right)} \tag{11}
\end{equation*}
$$

Since
$\tan ^{-1}\left[\frac{\cos \phi(\sinh r+\sinh s)}{\cos ^{2} \phi-\sinh r \sinh s}\right]=\operatorname{Im} \ln [(\cos \phi+\mathrm{i} \sinh r)(\cos \phi+\mathrm{i} \sinh s)]$

$$
\begin{equation*}
=\tan ^{-1}\left(\frac{\sinh r}{\cos \phi}\right)+\tan ^{-1}\left(\frac{\sinh s}{\cos \phi}\right) \tag{12}
\end{equation*}
$$

(11) becomes
$X=4 \pi \int_{0}^{\infty} \mathrm{d} r \int_{-r}^{r} \mathrm{~d} s \int_{0}^{\pi / 2} \mathrm{~d} \phi \cos \phi \frac{\tan ^{-1}(\sec \phi \sinh r)+\tan ^{-1}(\sec \phi \sinh s)}{\sinh r\left(\cos ^{2} \phi+\sinh ^{2} r\right)}$.
Once again, the term in the integrand of (13) odd in s may be dropped and following the elementary s-integration, one has

$$
\begin{equation*}
X=8 \pi \int_{0}^{\infty} \frac{r \mathrm{~d} r}{\sinh r} \int_{0}^{\pi / 2} \mathrm{~d} \phi \tan ^{-1}\left(\frac{\sinh r}{\cos \phi}\right) \frac{\cos \phi}{\cos ^{2} \phi+\sinh ^{2} r} \tag{14}
\end{equation*}
$$

To evaluate the ϕ-integral, we set $\tan \psi=\sec \phi \sinh r, \mu=\tan ^{-1}(\sinh r)=\cos ^{-1}(\operatorname{sech} r)$, to transform (14) into

$$
\begin{equation*}
X=8 \pi \int_{0}^{\infty} \frac{r \mathrm{~d} r}{\sinh r} \cos \mu \int_{\mu}^{\pi / 2} \frac{\psi \cos \psi \mathrm{~d} \psi}{\sqrt{\sin ^{2} \psi-\sin ^{2} \mu}} \tag{15}
\end{equation*}
$$

The ψ-integral is tabulated [8] and X is reduced to

$$
\begin{equation*}
X=4 \pi^{2} \int_{0}^{\infty} \frac{r \operatorname{sech} r \ln (1+\operatorname{sech} r)}{\sinh r} \mathrm{~d} r \tag{16}
\end{equation*}
$$

To evaluate the remaining integral, let

$$
\begin{equation*}
f(a)=\int_{0}^{\infty} \frac{r \ln (1-a \operatorname{sech} r)}{\sinh r \cosh r} \mathrm{~d} r \tag{17}
\end{equation*}
$$

for which $f(1)=X / 4 \pi^{2}$ and $f(0)=0$. By differentiation with respect to a and partial fraction decomposition, we obtain
$\left(1-a^{2}\right) \frac{\mathrm{d} f}{\mathrm{~d} a}=\int_{0}^{\infty} \frac{r \mathrm{~d} r}{\sinh r}-2 a \int_{0}^{\infty} \frac{r \mathrm{~d} r}{\sinh 2 r}-\frac{1}{a} \int_{0}^{\infty} r \sinh r\left[\frac{1}{\cosh r}-\frac{1}{\cosh r+a}\right]$.
The first two integrals on the right-hand side of (18) are tabulated [9] and, after an integration by parts, we find

$$
\begin{equation*}
\left(1-a^{2}\right) \frac{\mathrm{d} f}{\mathrm{~d} a}=\frac{\pi^{2}}{8}(2-a)-\frac{1}{a} \int_{0}^{\infty} \ln (1+a \operatorname{sech} r) \mathrm{d} r \tag{19}
\end{equation*}
$$

The substitution $u=\operatorname{sech} r$ leads to another tabulated integral [10], giving

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} a}=-\frac{\pi^{2}}{8 a}\left(\frac{1-a}{1+a}\right)+\frac{1}{2 a} \frac{\left(\cos ^{-1} a\right)^{2}}{1-a^{2}} \tag{20}
\end{equation*}
$$

which, with the substitution $a=\cos \theta$, yields
$X=4 \pi^{2} \int_{0}^{1} \frac{\mathrm{~d} f}{\mathrm{~d} a} \mathrm{~d} a=\pi^{4} \ln (2)+4 \pi^{2} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sin 2 \theta}\left[\theta^{2}-\frac{\pi^{2}}{8}(1-\cos (2 \theta))\right]$.
Finally, we find by setting $\phi=2 \theta$, and folding the new range of integration $[\pi / 2, \pi]$ back to [$0, \pi / 2$]

$$
\begin{align*}
X & =\pi^{4} \ln (2)+4 \pi^{2} \int_{0}^{\pi / 2} \frac{4 \phi(\phi-\pi)}{\sin \phi} d \phi \\
& =\pi^{4} \ln (2)-\frac{7}{2} \pi^{2} \zeta(3) \tag{22}
\end{align*}
$$

where we have used [11]

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\phi \mathrm{~d} \phi}{\sin \phi}=2 \mathbf{G}, \quad \int_{0}^{\pi / 2} \frac{\phi^{2} \mathrm{~d} \phi}{\sin \phi}=2 \pi \mathbf{G}-\frac{7}{2} \zeta(3) \tag{23}
\end{equation*}
$$

in which \mathbf{G} denotes Catalan's constant.

Discussion

In conclusion, we have obtained closed form expressions for the two six-fold integrals in (4)

$$
\begin{align*}
X_{1}= & -\pi^{4}\left[\frac{4}{3} \ln (2)-\frac{5}{\pi^{2}} \zeta(3)\right] \\
= & -30.705985239248899257622684446084815368758552081 \\
& 65945918981645846 \ldots . \tag{24}
\end{align*}
$$

$$
\begin{align*}
X_{2}= & \pi^{4}\left[\frac{2}{3} \ln (2)-\frac{2}{\pi^{2}} \zeta(3)\right] \\
= & 21.284905670516337983402598547497784400625730440810132 \\
& 220995696061 \ldots \tag{25}
\end{align*}
$$

This gives the value

$$
\begin{align*}
\Sigma_{2 x}= & 0.024179158918144405895450762162898431404915238425120 \\
& 7335945309986 \ldots, \tag{26}
\end{align*}
$$

in agreement with Ziesche's [6] seven place calculation. We hope to extend the calculation to an electron gas of arbitrary dimension, as was done for $E_{2 x}$.

Acknowledgments

The first author thanks Dr Paul Ziesche for a discussion of his work and the National Science foundation for support under grant DMR 0121146.

References

[1] Gell-Mann M and Brueckner K 1957 Phys. Rev. 106364
[2] Onsager L Unpublished
[3] Onsager L, Mittag L and Stephen M J 1966 Ann. Phys., Lpz 1871
[4] Isihara A and Ioriatti L 1980 Phys. Rev. B 22214
[5] Glasser M L 1984 J. Comput. Appl. Math. 10293
[6] Ziesche P 2007 Ann. Phys., Lpz 1645
[7] Luttinger J M and Ward J C 1960 Phys. Rev. 1181417
[8] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series and Products 6th edn (New York: Academic) p 466 no. 3.842(2)
[9] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series and Products 6th edn (New York: Academic) p 369, no. 3.521(1)
[10] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series and Products 6th edn (New York: Academic) p 554, no. 4.292(5)
[11] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series and Products 6th edn (New York: Academic) p 427, nos. 3.747(1,2)

